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Abstract. A connection between the reality type of a group representation, and the sym- 
metrized and antisymmetrized squares of that representation is noted. The correspondence 
leads to a simple reality test for space group representations. A detailed analysis reproduces 
the Herring test. 

1. Introduction 

It is well known, principally through the work of Wigner (1959), that the recognition 
of time-reversal symmetry in a quantum-mechanical system may lead to rather more 
energy degeneracies than can be inferred purely from a consideration of spatial sym- 
metries. In the absence of magnetic effects, the group-theoretical criterion for these 
extra degeneracies involves knowledge of the reality types, as determined by the 
Frobenius-Schur test, of the irreducible representations (reps) of the spatial symmetry 
group of the system. The details of the criterion are given in convenient tabular form on 
p 146 of Tinkham (1964). 

In the application of the above to a crystal, the Frobenius-Schur test becomes 
unwieldy on account of the infinite summation over the translational subgroup of the 
relevant space group. However, Herring (1937) was able to simplify the test by explicitly 
performing this summation. He found that the reality index, with values 1, 0 or - 1, 
corresponding to the property of being (a) real, (b)  complex, or (c) pseudo-real, respec- 
tively, of the character of the induced rep D of the space group G is given by 

where k is a wavevector of D, Gk is the little co-group of k ,  x is the character of an  allow- 
able rep of the little group @, and the prime restricts the summation to those coset 
representatives of the translation subgroup which send k into - k ,  or an  equivalent 
vector. An empty sum indicates a zero value for the index. Formula (l), usually called 
the Herring test, makes reality testing a practical proposition for space groups, for it 
involves only a finite sum over group elements. 

The first purpose bf the present paper is to draw attention to an  alternative expression 
for the reality indices of the reps of a locally compact group G, which, given tables of 
symmetrized and antisymmetrized squares of the reps of G, enables the reality testing 
to be done at  a glance. Unfortunately the value of this test is reduced somewhat in the 
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case ofspacegroups, for the realities ofthe reps of such groups have already been tabulated 
by Miller and Love (1967) and Bradley and Cracknell(l972). Nevertheless, a detailed 
analysis of the alternative formulation reproduces the Herring test in a manner which 
makes transparent the structure of the latter. 

2. The reality index 

If D is a rep of the finite group G, then Mackey (1953) has shown that 
(a) D is real o [D@D] contains A ( @ ;  
(b)  D is pseudo-real o {DOD} contains A ( @ ;  
(c) D is complex o D@D does not contain A(G);  where the square brackets and 

braces refer to the symmetrized and antisymmetrized squares of D, respectively, and 
where A(G) is the totally symmetric (ie trivial) representation of G. Equivalently, since 
A(G) can be contained at  most once in 000, D is real, pseudo-real or complex, according 
as A(@ has multiplicity 1, - 1 or 0, in the generalized representation 

U = [ D @ D ] - { D @ D } .  

Actually the latter characterization follows simply from the Frobenius-Schur test, 
without reference to Mackey (1953), when it is noted that x ( g 2 )  is the value at g of the 
character of U ,  where x is the character of D. 

It should be pointed out that although Mackey’s result refers to  finite groups, its 
proof is valid more generally. Thus the above characterization certainly applies to 
space groups, even though such groups are infinite and noncompact. 

It follows that should a table of the symmetrized and antisymmetrized squares of a 
space group G be available, then the reality types of the representations of G can be 
read off at once. In particular such a table appears in Bradley and Davies (1970) for 
Ti, the group of the zinc-blende structure. For example it is easily seen that A I  7 G 
is real, A 5  G is pseudo-real, A 3  t G is complex. 

3. The Herring test 

A deeper analysis of the above is possible when D is an induced representation, as is 
the case when G is a space group, for Mackey (1953) showed further how to effect the 
separation of the square of such a D into its symmetrized and antisymmetrized parts, 
in such a way that each part can be written as a sum of induced representations. The 
details of this separation, which require a fairly lengthy statement, have been simplified, 
made more complete computationally and in particular applied to space groups, by 
Bradley and Davies (1970). Rather than reproduce that work here, we refer the reader 
there for the necessary definitions and for the statement of theorem 6 and the equations 
(4.12) and (4.13). 

Now suppose D: is an  allowable representation of Gk, the little group of the wave- 
vector k ; then D: ? G is irreducible. By the Frobenius reciprocity theorem, an  induced 
representation contains A(C) if and only if the pre-induced representation contains 
A(H), where H i s  the relevant subgroup. Thus the reality type of DitG is determined 
by seeing whether or  not any of the pre-induced representations in (4.12) and (4.13) 
contain a trivial representation. The structure of these equations allows several sim- 
plifications in the analysis. 
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First, noting that [(DE t G)@(DE t G)] contains [ D t @ D t ]  t G and that 
{(DE t G)@(DE t G)} contains {DE@D!} 7 G, we see that DF t G is of the same reality 
type as DE if the latter is real or pseudo-real. By restriction of Df@D; to the translation 
group it is evident that DE is complex if 2k $ 0. We shall see presently that if 2k = 0 
(ie 2k = 0 or a reciprocal lattice vector), then A(G) cannot be contained in the second 
or third terms of (4.12) and (4.13). Then follows, if 2k = 0, the stronger result that 
Dt t G has the same reality type as DE, which, again because 2k 0, has the reality 
type of the associated projective representation of the little co-group Ck. Of course 
if  C is symmorphic, or k is interior to the Brillouin zone (which cannot be the case if 
2k 3 0) then the latter representation is a vector representation and hence may be 
tested for reality by the usual Frobenius-Schur test. Otherwise, the projective general- 
ization of this test, noted by Backhouse (1970) and Brown (1970), may be employed. 
In either case the Frobenius-Schur test reduces at  once to the special case of the Herring 
test ( 1 )  i n  which 2k = 0, for then the summation can only be taken over the coset 
representatives of the translation subgroup in the little group. 

We are left to consider the cases when 0; is complex and 2k $ 0, where it is necessary 
to look at  the second and third terms of (4.12) and (4.13). Actually the third term in each 
equation is not relevant here, because we have already remarked that the square of an 
irreducible representation can contain A(G) no more than once. Thus it is sufficient to 
check whether or not, for each self-inverse double coset a, the characters xtd, given by 
(4.15) and (4.16), contain A(@) .  Recalling that the allowable representations of the 
little groups act like scalars for the translations, i t  is a prerequisite for one or other of 
these characters to contain A(M!) that R,k + k  = 0. We can now see the reason for the 
separation of the cases 2k 8 0 and 2k 0, for the latter denies the existence of R,, 
never an element of Gk. Now, from Q 2, the reality index is the frequency of A ( ~ )  in 

in M;.  The condition R,k + k 0 implies that this character is independent of the trans- 
lation w, and hence that the index is the frequency of A(i@) in the representation of 
@ = M:jT whose character vanishes on E: = L!jT, but which has value 
2~k,[({Alal. {S10))2] on the other coset of z: in %?:. Thus the index is 

zap k +  - I&.  which takes zero value on L t ,  but 2 ~ ~ [ ( { A l a J { S ( w ) ) 2 ]  on the other coset of L t  

sinceIMtI = 2~L~~,wherethesummationisoverS E L:. Now,bearinginmindR,k = - k ,  
which implies = Gk and Ak = R,k 3 - k ,  we see that this summation is identical 
to that given by the Herring test for 2k $ 0. 

4. Conclusion 

We have pointed out an alternative to the Frobenius-Schur and Herring methods for 
the reality testing of group representations, which becomes particularly useful if tables 
of symmetrized and antisymmetrized squares are available. We have also shown that 
an analysis of the alternative method leads to the Herring test in the case of space groups. 
One novel feature of this analysis is that the infinite translation subgroup is accounted 
for without the need for the mathematically unrigorous infinite summation in the 
reduction of the Frobenius-Schur test to the Herring test. 
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